Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KREJSA, J. VĚCHET, S. RIPEL, T.
Originální název
Neural Network Based Reactive Navigation for Mobile Robot in Dynamic Environment
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
When mobile robots are used among people, the best accepted motion related behavior is a human-like motion of the robot. Such behavior is difficult to obtain with commonly used finite state machine based planners, but can easily be evoked when human controls the robot. The paper presents the way of transforming such knowledge from human controller to reactive planner in the robot navigation module. Reactive planner is based on machine learning, neural networks in particular. The planner consists of two separate neural networks, one serving as predictor of dynamic obstacles behavior, second one serving as the reactive planner itself, producing desirable actions of the robot both in terms of velocity and direction. Planner was verified on real robot producing human-like behavior when used in real environment.
Klíčová slova
mobile robot, reactive navigation, artificial neural networks
Autoři
KREJSA, J.; VĚCHET, S.; RIPEL, T.
Rok RIV
2013
Vydáno
1. 1. 2013
ISSN
1012-0394
Periodikum
Solid State Phenomena
Ročník
Číslo
198
Stát
Švýcarská konfederace
Strany od
108
Strany do
113
Strany počet
6
BibTex
@article{BUT103888, author="Jiří {Krejsa} and Stanislav {Věchet} and Tomáš {Ripel}", title="Neural Network Based Reactive Navigation for Mobile Robot in Dynamic Environment", journal="Solid State Phenomena", year="2013", volume="2013", number="198", pages="108--113", issn="1012-0394" }