Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
GRÉZL, F. KARAFIÁT, M.
Originální název
Semi-Supervised Bootstrapping Approach For Neural Network Feature Extractor Training
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
This paper presents bootstrapping approach for training the Bottle-Neck neural network feature extractor which provides features for subsequent GMM-HMM recognizer. One can use this recognizer to automatically transcribe the unsupervised data and assign the confidence of the transcription. Based on the confidence, segments are selected and mixed with supervised data and new NNs are trained. The automatic transcription can recover 40-55% in comparison to manually transcribed data. This is 3 to 5% absolute improvement over NN trained on supervised data only. Using 70-85% of automatically transcribed segments with the highest confidence was found optimal to achieve this result. Dropping the rest of the data prevents training on low quality transcripts.
Klíčová slova
Semi-supervised training, bootstrapping, bottle-neck features
Autoři
GRÉZL, F.; KARAFIÁT, M.
Rok RIV
2013
Vydáno
8. 12. 2013
Nakladatel
IEEE Signal Processing Society
Místo
Olomouc
ISBN
978-1-4799-2755-5
Kniha
Proceedings of ASRU 2013
Strany od
470
Strany do
475
Strany počet
6
URL
http://www.fit.vutbr.cz/research/groups/speech/publi/2013/grezl_asru2013_0000470.pdf
BibTex
@inproceedings{BUT105972, author="František {Grézl} and Martin {Karafiát}", title="Semi-Supervised Bootstrapping Approach For Neural Network Feature Extractor Training", booktitle="Proceedings of ASRU 2013", year="2013", pages="470--475", publisher="IEEE Signal Processing Society", address="Olomouc", isbn="978-1-4799-2755-5", url="http://www.fit.vutbr.cz/research/groups/speech/publi/2013/grezl_asru2013_0000470.pdf" }