Detail publikace

The Dirichlet boundary value problems for strongly singular higher-order nonlinear functional-differential equations

MUKHIGULASHVILI, S.

Originální název

The Dirichlet boundary value problems for strongly singular higher-order nonlinear functional-differential equations

Typ

článek v časopise - ostatní, Jost

Jazyk

angličtina

Originální abstrakt

The a priori boundedness principle is proved for the Dirichlet boundary value problems for strongly singular higher-order nonlinear functional-differential equations. Several sufficient conditions of solvability of the Dirichlet problem under consideration are derived from the a priori boundedness principle. The proof of the a priori boundedness principle is based on the Agarwal-Kiguradze type theorems, which guarantee the existence of the Fredholm property for strongly singular higher-order linear differential equations with argument deviations under the two-point conjugate and right-focal boundary conditions.

Klíčová slova

higher order functional-differential equation; Dirichlet boundary value problem; strong singularity

Autoři

MUKHIGULASHVILI, S.

Rok RIV

2013

Vydáno

2. 12. 2013

Nakladatel

Institute of Mathematics of the Academy of Sciences of the Czech Republic

Místo

Praha

ISSN

0011-4642

Periodikum

Czechoslovak Mathematical Journal

Ročník

68

Číslo

1

Stát

Česká republika

Strany od

235

Strany do

263

Strany počet

28

BibTex

@article{BUT106950,
  author="Sulkhan {Mukhigulashvili}",
  title="The Dirichlet boundary value problems for strongly singular higher-order nonlinear functional-differential equations",
  journal="Czechoslovak Mathematical Journal",
  year="2013",
  volume="68",
  number="1",
  pages="235--263",
  issn="0011-4642"
}