Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
MUKHIGULASHVILI, S.
Originální název
The Dirichlet boundary value problems for strongly singular higher-order nonlinear functional-differential equations
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
The a priori boundedness principle is proved for the Dirichlet boundary value problems for strongly singular higher-order nonlinear functional-differential equations. Several sufficient conditions of solvability of the Dirichlet problem under consideration are derived from the a priori boundedness principle. The proof of the a priori boundedness principle is based on the Agarwal-Kiguradze type theorems, which guarantee the existence of the Fredholm property for strongly singular higher-order linear differential equations with argument deviations under the two-point conjugate and right-focal boundary conditions.
Klíčová slova
higher order functional-differential equation; Dirichlet boundary value problem; strong singularity
Autoři
Rok RIV
2013
Vydáno
2. 12. 2013
Nakladatel
Institute of Mathematics of the Academy of Sciences of the Czech Republic
Místo
Praha
ISSN
0011-4642
Periodikum
Czechoslovak Mathematical Journal
Ročník
68
Číslo
1
Stát
Česká republika
Strany od
235
Strany do
263
Strany počet
28
BibTex
@article{BUT106950, author="Sulkhan {Mukhigulashvili}", title="The Dirichlet boundary value problems for strongly singular higher-order nonlinear functional-differential equations", journal="Czechoslovak Mathematical Journal", year="2013", volume="68", number="1", pages="235--263", issn="0011-4642" }