Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
DIBLÍK, J. VÍTOVEC, J.
Originální název
Asymptotic behavior of solutions of systems of dynamic equations on time scales in a set whose boundary is a combination of strict egress and strict ingress points
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
In this paper we study the asymptotic behavior of solutions of nonlinear dynamic systems on time scales of the form $$y^\Delta(t)=f(t,y(t)),$$ where $f\colon\mathbb{T}\times\mathbb{R}^n\rightarrow\mathbb{R}^n$ and $\mathbb{T}$ is a time scale. For a given set $\Omega\subset\mathbb{T}\times\mathbb{R}^{n}$, we formulate the conditions for function $f$, which guarantee that at least one solution $y$ of the above system stays in $\Omega$. The dimension of the space of initial data generating such solutions is discussed and perturbed linear systems are considered as well. A linear system with singularity at infinity is considered as an example.
Klíčová slova
Time scale; Dynamic system; Asymptotic behavior of solution; Retract; Retraction; Lyapunov method
Autoři
DIBLÍK, J.; VÍTOVEC, J.
Rok RIV
2014
Vydáno
4. 6. 2014
ISSN
0096-3003
Periodikum
APPLIED MATHEMATICS AND COMPUTATION
Ročník
238
Číslo
6
Stát
Spojené státy americké
Strany od
289
Strany do
299
Strany počet
11
URL
http://www.sciencedirect.com/science/article/pii/S0096300314005451
BibTex
@article{BUT107428, author="Josef {Diblík} and Jiří {Vítovec}", title="Asymptotic behavior of solutions of systems of dynamic equations on time scales in a set whose boundary is a combination of strict egress and strict ingress points", journal="APPLIED MATHEMATICS AND COMPUTATION", year="2014", volume="238", number="6", pages="289--299", doi="10.1016/j.amc.2014.04.021", issn="0096-3003", url="http://www.sciencedirect.com/science/article/pii/S0096300314005451" }