Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
FEDORIK, F.
Originální název
Gradient vs. approximation design optimization techniques in low-dimensional convex problems
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Design Optimization methods' application in structural designing represents a suitable manner for efficient designs of practical problems. The optimization techniques' implementation into multi-physical softwares permits designers to utilize them in a wide range of engineering problems. These methods are usually based on modified mathematical programming techniques and/or their combinations to improve universality and robustness for various human and technical problems. The presented paper deals with the analysis of optimization methods and tools within the frame of one to three-dimensional strictly convex optimization problems, which represent a component of the Design Optimization module in the Ansys program. The First Order method, based on combination of steepest descent and conjugate gradient method, and Supbproblem Approximation method, which uses approximation of dependent variables' functions, accompanying with facilitation of Random, Sweep, Factorial and Gradient Tools, are analyzed, where in different characteristics of the methods are observed.
Klíčová slova
constraints; Convex optimization; efficiency; FEM/FEA; First Order Method; robustness; Subproblem Approximation Method
Autoři
Rok RIV
2013
Vydáno
21. 9. 2013
ISBN
978-0-7354-1184-5
Kniha
ICNAAM 2013
ISSN
0094-243X
Periodikum
AIP conference proceedings
Ročník
1558
Číslo
2
Stát
Spojené státy americké
Strany od
2175
Strany do
2178
Strany počet
4
BibTex
@inproceedings{BUT107571, author="Filip {Fedorik}", title="Gradient vs. approximation design optimization techniques in low-dimensional convex problems", booktitle="ICNAAM 2013", year="2013", journal="AIP conference proceedings", volume="1558", number="2", pages="2175--2178", isbn="978-0-7354-1184-5", issn="0094-243X" }