Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
KŘUPKA, A.; ŘÍHA, K.
Originální název
Detection of Edge Structures on Surface of Sedimentary Grains Acquired by Electron Microscope
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
This paper presents a method for edge detection on the surface of sedimentary grains that were acquired by an electron microscope. Local grain parts are described by textural co-occurrence features. Edges are then detected by classification of co-occurrence features corresponding to particular parts of image. For this classification, a logistic regression model is used. The precision and recall values of the cross-validated model are 82% and 77% respectively. Further, a measure that quantifies a maximal edge length detected on a grain is proposed. The purpose of this measure is to provide a high-level feature for comparing different grain sets. To evaluate a usability of the measure, the measure is computed for sets of grains of different geomorphological geneses and the differences are compared. Because the results showed a specific measure range for some geneses, the proposed edge detection method can be considered as useful for description of sedimentary grains.
Anglický abstrakt
Klíčová slova
Edge structure, co-occurrence matrix, logistic regression model, sedimentary grains, edge length
Klíčová slova v angličtině
Autoři
Rok RIV
2015
Vydáno
09.07.2015
Místo
Berlin, Germany
ISBN
978-1-4799-8497-8
Kniha
Proceedings of the 38th International Conference on Telecommunication and Signal Processing
Strany od
785
Strany do
788
Strany počet
4
URL
https://ieeexplore.ieee.org/document/7296373
BibTex
@inproceedings{BUT109404, author="Aleš {Křupka} and Kamil {Říha}", title="Detection of Edge Structures on Surface of Sedimentary Grains Acquired by Electron Microscope", booktitle="Proceedings of the 38th International Conference on Telecommunication and Signal Processing", year="2015", pages="785--788", address="Berlin, Germany", doi="10.1109/TSP.2015.7296373", isbn="978-1-4799-8497-8", url="https://ieeexplore.ieee.org/document/7296373" }