Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
DROTÁR, P. SMÉKAL, Z.
Originální název
Stability of Feature Selection Algorithms and its Influence on Prediction Accuracy in Biomedical Datasets
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Feature selection techniques become significant part of many bioinformatics and biomedical applications. Choosing the important features is essential for biomarker discovery, provide better understanding of the data and potentially improve prediction performance. However, as the number of samples in dataset is small, the feature selection tends to be unstable. In this paper, the stability of five popular feature selection techniques is compared and analyzed when original dataset is perturbed by adding, removing or simply resampling the original observations. Next, the feature selection techniques are used as filter prior to AdaBoost classifier and their influence on classification accuracy and Mathews correlation coefficient is compared.
Klíčová slova
feature selection, stability, Dunne stability index, bioinformatics, Adaboost
Autoři
DROTÁR, P.; SMÉKAL, Z.
Vydáno
27. 10. 2014
Nakladatel
IEEE
Místo
Bangkok
ISBN
9781479940752
Kniha
TENCON 2011 - 2011 IEEE Region 10 Conference
Strany od
1
Strany do
4
Strany počet
URL
https://ieeexplore.ieee.org/document/7022309
BibTex
@inproceedings{BUT110176, author="Peter {Drotár} and Zdeněk {Smékal}", title="Stability of Feature Selection Algorithms and its Influence on Prediction Accuracy in Biomedical Datasets", booktitle="TENCON 2011 - 2011 IEEE Region 10 Conference", year="2014", pages="1--4", publisher="IEEE", address="Bangkok", doi="10.1109/TENCON.2014.7022309", isbn="9781479940752", url="https://ieeexplore.ieee.org/document/7022309" }