Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KUNOVSKÝ, J. ŠÁTEK, V. KOCINA, F. NEČASOVÁ, G. MAREK, M. SCHIRRER, A.
Originální název
New Trends in Taylor Series Based Computations
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
The paper is a part of student cooperation in AKTION project (Austria-Czech) and concentrates on the numerical solution of partial differential equations (PDEs) using high-order forward, backward and symmetrical formulas. As an example, the hyperbolic PDE is analyzed. The paper is based on the numerical solution of ordinary differential equations by the Taylor series method and on the simulation language TKSL that has been created to test the properties of the technical initial problems and to test an algorithm for Taylor series method. The idea of parallel computations using special integrators is also a part of the paper.
Klíčová slova
Ordinary Differential Equations, Taylor Series Method, TKSL, Partial Differential Equations
Autoři
KUNOVSKÝ, J.; ŠÁTEK, V.; KOCINA, F.; NEČASOVÁ, G.; MAREK, M.; SCHIRRER, A.
Rok RIV
2015
Vydáno
23. 4. 2015
Nakladatel
American Institute of Physics
Místo
Rhodes
ISBN
978-0-7354-1287-3
Kniha
12th International Conference of Numerical Analysis and Applied Mathematics
ISSN
0094-243X
Periodikum
AIP conference proceedings
Ročník
Číslo
1648
Stát
Spojené státy americké
Strany od
1
Strany do
4
Strany počet
URL
http://dx.doi.org/10.1063/1.3241449
BibTex
@inproceedings{BUT111516, author="Jiří {Kunovský} and Václav {Šátek} and Filip {Kocina} and Gabriela {Nečasová} and Martin {Marek} and Alexander {Schirrer}", title="New Trends in Taylor Series Based Computations", booktitle="12th International Conference of Numerical Analysis and Applied Mathematics", year="2015", journal="AIP conference proceedings", volume="2015", number="1648", pages="1--4", publisher="American Institute of Physics", address="Rhodes", doi="10.1063/1.4913136", isbn="978-0-7354-1287-3", issn="0094-243X", url="http://dx.doi.org/10.1063/1.3241449" }