Detail publikace
Domain adaptation via within-class covariance correction in I-vector based speaker recognition systems
GLEMBEK, O. MA, J. MATĚJKA, P. ZHANG, B. PLCHOT, O. BURGET, L. MATSOUKAS, S.
Originální název
Domain adaptation via within-class covariance correction in I-vector based speaker recognition systems
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
In this paper, we have shown a technique of within-class correctionfor Linear Discriminant Analysis estimation. We have shown thatwhen correct dataset clustering is used, adapting the within-classcovariance of LDA by low-rank between-dataset covariance matrixcan lead to significant improvement of the system, namely up to70% in the Domain Adaptation Task, and 17.5% and 36% relativein the RATS unmatched and semi-matched tasks, respectively. Thedataset clustering problem gave us an interesting direction for futureresearch.
Klíčová slova
speaker recognition, i-vectors, source normalization,LDA, inter-dataset variability compensation
Autoři
GLEMBEK, O.; MA, J.; MATĚJKA, P.; ZHANG, B.; PLCHOT, O.; BURGET, L.; MATSOUKAS, S.
Rok RIV
2014
Vydáno
4. 5. 2014
Nakladatel
IEEE Signal Processing Society
Místo
Florencie
ISBN
978-1-4799-2892-7
Kniha
Proceedings of ICASSP 2014
Strany od
4060
Strany do
4064
Strany počet
5
URL
BibTex
@inproceedings{BUT111543,
author="Ondřej {Glembek} and Jeff {Ma} and Pavel {Matějka} and Bing {Zhang} and Oldřich {Plchot} and Lukáš {Burget} and Spyros {Matsoukas}",
title="Domain adaptation via within-class covariance correction in I-vector based speaker recognition systems",
booktitle="Proceedings of ICASSP 2014",
year="2014",
pages="4060--4064",
publisher="IEEE Signal Processing Society",
address="Florencie",
doi="10.1109/ICASSP.2014.6854359",
isbn="978-1-4799-2892-7",
url="https://www.fit.vut.cz/research/publication/10555/"
}
Dokumenty