Detail publikace
Adaptation of Multilingual Stacked Bottle-neck Neural Network Structure for New Language
GRÉZL, F. KARAFIÁT, M. VESELÝ, K.
Originální název
Adaptation of Multilingual Stacked Bottle-neck Neural Network Structure for New Language
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
In this paper a multilingual training of Stacked Bottle-Neck neural network structure for feature extraction is addressed. While for languageswith plentiful resources, the optimal approach is to train theBN-NN on the target data, limited resources call for re-using datafrom other languages.
Klíčová slova
feature extraction, Bottle-neck features, neuralnetwork adaptation, multilingual neural networks, Stacked Bottle-Neck structure
Autoři
GRÉZL, F.; KARAFIÁT, M.; VESELÝ, K.
Rok RIV
2014
Vydáno
4. 5. 2014
Nakladatel
IEEE Signal Processing Society
Místo
Florencie
ISBN
978-1-4799-2892-7
Kniha
Proceedings of ICASSP 2014
Strany od
7704
Strany do
7708
Strany počet
5
URL
BibTex
@inproceedings{BUT111544,
author="František {Grézl} and Martin {Karafiát} and Karel {Veselý}",
title="Adaptation of Multilingual Stacked Bottle-neck Neural Network Structure for New Language",
booktitle="Proceedings of ICASSP 2014",
year="2014",
pages="7704--7708",
publisher="IEEE Signal Processing Society",
address="Florencie",
doi="10.1109/ICASSP.2014.6855089",
isbn="978-1-4799-2892-7",
url="http://www.fit.vutbr.cz/research/groups/speech/publi/2014/grezl_icassp2014_p7704_adapation.pdf"
}