Detail publikace

VGEN: Fast Vertical Mining of Sequential Generator Patterns

FOURNIER-VIGER, P. GOMARIZ, A. ŠEBEK, M. HLOSTA, M.

Originální název

VGEN: Fast Vertical Mining of Sequential Generator Patterns

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

Sequential pattern mining is a popular data mining task with wide applications. However, the set of all sequential patterns can be very large. To discover fewer but more representative patterns, several compact representations of sequential patterns have been studied. The set of sequential generatorsis one the most popular representations. It was shown to provide higher accuracy for classification than using all or only closed sequential patterns. Furthermore, mining generators is a key step in several other data mining tasks such as sequential rule generation. However, mining generators is computationally expensive. To address this issue, we propose a novel mining algorithm namedVGEN (Vertical sequential GENerator miner). An experimental study on five real datasets shows that VGEN is up to two orders of magnitude faster than the state-of-the-art algorithms for sequential generator mining.

Klíčová slova

sequential patterns, generators, vertical mining, candidate pruning

Autoři

FOURNIER-VIGER, P.; GOMARIZ, A.; ŠEBEK, M.; HLOSTA, M.

Rok RIV

2014

Vydáno

2. 9. 2014

Nakladatel

Springer Verlag

Místo

Munich

ISBN

978-3-319-10159-0

Kniha

Data Warehousing and Knowledge Discovery

Strany od

476

Strany do

488

Strany počet

12

URL

BibTex

@inproceedings{BUT111554,
  author="Philippe {Fournier-Viger} and Antonio {Gomariz} and Michal {Šebek} and Martin {Hlosta}",
  title="VGEN: Fast Vertical Mining of Sequential Generator Patterns",
  booktitle="Data Warehousing and Knowledge Discovery",
  year="2014",
  pages="476--488",
  publisher="Springer Verlag",
  address="Munich",
  doi="10.1007/978-3-319-10160-6\{_}42",
  isbn="978-3-319-10159-0",
  url="http://dx.doi.org/10.1007/978-3-319-10160-6_42"
}