Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
PETRLÍK, J. FUČÍK, O. SEKANINA, L.
Originální název
Multiobjective Selection of Input Sensors for SVR Applied to Road Traffic Prediction
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Modern traffic sensors can measure various road traffic variables such as the traffic flow and average speed. However, some measurements can lead to incorrect data which cannot further be used in subsequent processing tasks such as traffic prediction or intelligent control. In this paper, we propose a method selecting a subset of input sensors for a support vector regression (SVR) model which is used for traffic prediction. The method is based on a multimodal and multiobjective NSGA-II algorithm. The multiobjective approach allowed us to find a good trade off between the prediction error and the number of sensors in real-world situations when many traffic data measurements are unavailable.
Klíčová slova
road traffic forecasting, multiobjective feature selection, multiobjective genetic algorithms
Autoři
PETRLÍK, J.; FUČÍK, O.; SEKANINA, L.
Rok RIV
2014
Vydáno
13. 9. 2014
Nakladatel
Springer Verlag
Místo
Heidelberg
ISBN
978-3-319-10761-5
Kniha
Parallel Problem Solving from Nature - PPSN XIII
Edice
Lecture Notes in Computer Science
Strany od
802
Strany do
811
Strany počet
10
BibTex
@inproceedings{BUT111559, author="Jiří {Petrlík} and Otto {Fučík} and Lukáš {Sekanina}", title="Multiobjective Selection of Input Sensors for SVR Applied to Road Traffic Prediction", booktitle="Parallel Problem Solving from Nature - PPSN XIII", year="2014", series="Lecture Notes in Computer Science", volume="8672", pages="802--811", publisher="Springer Verlag", address="Heidelberg", doi="10.1007/978-3-319-10762-2\{_}79", isbn="978-3-319-10761-5" }