Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
CHALOUPKA, J. KUNOVSKÝ, J. MARTINKOVIČOVÁ, A. ŠÁTEK, V. THONHOFER, E.
Originální název
Multiple Integral Computations Using Taylor Series
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
The paper is a part of student cooperation in AKTION project (Austria-Czech) and deals with possibilities of numerical solution of initial value problems of ordinary differential equations (ODEs). The Taylor series method with automatic computation of higher Taylor series terms is used for solution of multiple integrals. A Multiple integral of a continuous function of n variables can be computed by n-ary integration of the function fixing the remaining variables. These simple integrals can be solved as a ODEs, thus introducing a problem of parallel solving of a growing number of equations with respect to n and the required precision.
Klíčová slova
Differential equations, Multiple integrals, Taylor series method, Stiff systems, TKSL, MATLAB
Autoři
CHALOUPKA, J.; KUNOVSKÝ, J.; MARTINKOVIČOVÁ, A.; ŠÁTEK, V.; THONHOFER, E.
Rok RIV
2015
Vydáno
10. 4. 2015
Nakladatel
American Institute of Physics
Místo
Rhodes
ISBN
978-0-7354-1287-3
Kniha
12th International Conference of Numerical Analysis and Applied Mathematics
ISSN
0094-243X
Periodikum
AIP conference proceedings
Ročník
Číslo
1648
Stát
Spojené státy americké
Strany od
1
Strany do
4
Strany počet
URL
http://dx.doi.org/10.1063/1.4913137
BibTex
@inproceedings{BUT111569, author="Jan {Chaloupka} and Jiří {Kunovský} and Alžbeta {Martinkovičová} and Václav {Šátek} and Elvira {Thonhofer}", title="Multiple Integral Computations Using Taylor Series", booktitle="12th International Conference of Numerical Analysis and Applied Mathematics", year="2015", journal="AIP conference proceedings", volume="2015", number="1648", pages="1--4", publisher="American Institute of Physics", address="Rhodes", doi="10.1063/1.4913137", isbn="978-0-7354-1287-3", issn="0094-243X", url="http://dx.doi.org/10.1063/1.4913137" }