Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
HYRŠ, M. SCHWARZ, J.
Originální název
Multivariate Gaussian Copula in Estimation of Distribution Algorithm with Model Migration
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
The paper presents a new concept of an island-based model of Estimation of Distribution Algorithms (EDAs) with a bidirectional topology in the field of numerical optimization in continuous domain. The traditional migration of individuals is replaced by the probability model migration. Instead of a classical joint probability distribution model, the multivariate Gaussian copula is used which must be specified by correlation coefficients and parameters of a univariate marginal distributions. The idea of the proposed Gaussian Copula EDA algorithm with model migration (GC-mEDA) is to modify the parameters of a resident model respective to each island by the immigrant model of the neighbour island. The performance of the proposed algorithm is tested over a group of five well-known benchmarks.
Klíčová slova
Estimation of distribution algorithms, Copula Theory, Sklar's theorem, multivariate Gaussian copula, island-based model, model migration, optimization problems.
Autoři
HYRŠ, M.; SCHWARZ, J.
Rok RIV
2014
Vydáno
11. 12. 2014
Nakladatel
Institute of Electrical and Electronics Engineers
Místo
Piscataway
ISBN
978-1-4799-4492-7
Kniha
2014 IEEE Symposium on Foundations of Computational Intelligence (FOCI) Proceedings
Strany od
114
Strany do
119
Strany počet
6
BibTex
@inproceedings{BUT111681, author="Martin {Hyrš} and Josef {Schwarz}", title="Multivariate Gaussian Copula in Estimation of Distribution Algorithm with Model Migration", booktitle="2014 IEEE Symposium on Foundations of Computational Intelligence (FOCI) Proceedings", year="2014", pages="114--119", publisher="Institute of Electrical and Electronics Engineers", address="Piscataway", doi="10.1109/FOCI.2014.7007815", isbn="978-1-4799-4492-7" }