Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
DROTÁR, P.; SMÉKAL, Z.
Originální název
COMPARATIVE STUDY OF MACHINE LEARNING TECHNIQUES FOR SUPERVISED CLASSIFICATION OF BIOMEDICAL DATA
Anglický název
Druh
Článek recenzovaný mimo WoS a Scopus
Originální abstrakt
Several classification methods have been widely used in literature for identification of diseases or differential diagnosis of various types of disorders. Classification methods such as support vector machines, random forests, AdaBoost, deep belief networks, K- nearest neighbors, linear discriminant analysis or perceptron are probably the most popular ones. Even if these methods are frequently used there is a lack of comparison between them to find better framework for classification. In this study, we compared performance of the above mentioned classification methods. The 10-fold cross validation was used to calculate accuracy and Matthews correlation coefficient of the classifiers. In each case these methods were applied to eight binary biomedical datasets. The same evaluation was realized also in conjunction with feature selection technique that passed only hundred most relevant features. Even though there is no single classification method that dominates in terms of performance, we found that some methods provide more consistent performance than others.
Anglický abstrakt
Klíčová slova
SVM, AdaBoost, Random Forests, Deep Belief Networks, bioinformatics, microarray
Klíčová slova v angličtině
Autoři
Vydáno
30.09.2014
Nakladatel
Technical University of Kosice
Místo
Kosice
ISSN
1335-8243
Periodikum
Acta Electrotechnica et Informatica
Svazek
2014
Číslo
3
Stát
Slovenská republika
Strany od
5
Strany do
10
Strany počet
6
URL
http://www.aei.tuke.sk/papers/2014/3/01_Drotar.pdf
BibTex
@article{BUT112064, author="Peter {Drotár} and Zdeněk {Smékal}", title="COMPARATIVE STUDY OF MACHINE LEARNING TECHNIQUES FOR SUPERVISED CLASSIFICATION OF BIOMEDICAL DATA", journal="Acta Electrotechnica et Informatica", year="2014", volume="2014", number="3", pages="5--10", doi="10.15546/aeei-2014-0021", issn="1335-8243", url="http://www.aei.tuke.sk/papers/2014/3/01_Drotar.pdf" }