Detail publikace

Effect of high temperatures on microstructure of repair mortars containing artificial aggregate based on sintered ash

BYDŽOVSKÝ, J. MELICHAR, T. DUFKA, A. FIEDLEROVÁ, M.

Originální název

Effect of high temperatures on microstructure of repair mortars containing artificial aggregate based on sintered ash

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

The research presented in this article is focused on analyzing of high temperature influence on behaviour and microstructure of polymeric-cement matrix based repair materials containing lightweight aggregates on the basis of sintered ash. Also admixtures and polymeric fibres were applied to obtain the required parameters. The study of microstructure and its changes was realized using SEM, XRD and DTA analytical methods. Maximum temperature of exposure environment of the tested mortars was 1000 degrees of Celsius, while cooling of specimens was gradual.

Klíčová slova

High temperature, microstructure, mortar, polymer-cement, lightweight, aggregate, sintered ash.

Autoři

BYDŽOVSKÝ, J.; MELICHAR, T.; DUFKA, A.; FIEDLEROVÁ, M.

Rok RIV

2015

Vydáno

20. 2. 2015

Nakladatel

Trans Tech Publications

Místo

Switzerland

ISBN

978-3-03835-452-9

Kniha

Binders, Materials and Technologies in Modern Construction

ISSN

1022-6680

Periodikum

Advanced Materials Research

Ročník

1100(2015)

Číslo

02

Stát

Švýcarská konfederace

Strany od

147

Strany do

151

Strany počet

5

BibTex

@inproceedings{BUT113042,
  author="Jiří {Bydžovský} and Tomáš {Melichar} and Amos {Dufka} and Michaela {Dvořáková}",
  title="Effect of high temperatures on microstructure of repair mortars containing artificial aggregate based on sintered ash",
  booktitle="Binders, Materials and Technologies in Modern Construction",
  year="2015",
  journal="Advanced Materials Research",
  volume="1100(2015)",
  number="02",
  pages="147--151",
  publisher="Trans Tech Publications",
  address="Switzerland",
  isbn="978-3-03835-452-9",
  issn="1022-6680"
}