Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
VELEBA, V.
Originální název
ADAPTIVE CONTROL OF HOT-AIR LABORATORY MODEL USING ARTIFICIAL NEURAL NETWORKS
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
The real application of the neural network as a control and estimation element was described. Two parameters can be controlled in a laboratory hot-air system – the airflow and the temperature inside the tunnel. The controlled system displays ordinary negative effects encountered in industrial applications. When the basic approaches to control using neural networks had been studied, a new control algorithm - semi-inversion controller was designed. The controller is capable of solving problems such as oscillating control action, noise sensitivity and ill-estimated parameters in the initial phase of control or adjustment.
Klíčová slova
Neural Network, Adaptive Control, Semiinversion Controller
Autoři
Rok RIV
2004
Vydáno
1. 1. 2004
Nakladatel
Ing. Zdeněk Novotný CSc.
Místo
Brno
ISBN
80-214-2636-5
Kniha
Proceedings of 10th Conference Student EEICT 2004
Číslo edice
první
Strany od
407
Strany do
411
Strany počet
5
URL
http://www.feec.vutbr.cz/EEICT/
BibTex
@inproceedings{BUT11373, author="Václav {Veleba}", title="ADAPTIVE CONTROL OF HOT-AIR LABORATORY MODEL USING ARTIFICIAL NEURAL NETWORKS", booktitle="Proceedings of 10th Conference Student EEICT 2004", year="2004", number="první", pages="5", publisher="Ing. Zdeněk Novotný CSc.", address="Brno", isbn="80-214-2636-5", url="http://www.feec.vutbr.cz/EEICT/" }