Detail publikačního výsledku

An analysis of the stability boundary for a linear fractional difference system

KISELA, T.

Originální název

An analysis of the stability boundary for a linear fractional difference system

Anglický název

An analysis of the stability boundary for a linear fractional difference system

Druh

Článek WoS

Originální abstrakt

This paper deals with basic stability properties of a two-term linear autonomous fractional difference system involving the Riemann-Liouville difference. In particular, we focus on the case when eigenvalues of the system matrix lie on a boundary curve separating asymptotic stability and unstability regions. This issue was posed as an open problem in the paper J. Čermák, T. Kisela, and L. Nechvátal (2013). Thus, the paper completes the stability analysis of the corresponding fractional difference system.

Anglický abstrakt

This paper deals with basic stability properties of a two-term linear autonomous fractional difference system involving the Riemann-Liouville difference. In particular, we focus on the case when eigenvalues of the system matrix lie on a boundary curve separating asymptotic stability and unstability regions. This issue was posed as an open problem in the paper J. Čermák, T. Kisela, and L. Nechvátal (2013). Thus, the paper completes the stability analysis of the corresponding fractional difference system.

Klíčová slova

fractional difference system; stability; Laplace transform

Klíčová slova v angličtině

fractional difference system; stability; Laplace transform

Autoři

KISELA, T.

Rok RIV

2016

Vydáno

15.07.2015

ISSN

0862-7959

Periodikum

Mathematica Bohemica

Svazek

140

Číslo

2

Stát

Česká republika

Strany od

195

Strany do

203

Strany počet

9

BibTex

@article{BUT115852,
  author="Tomáš {Kisela}",
  title="An analysis of the stability boundary for a linear fractional difference system",
  journal="Mathematica Bohemica",
  year="2015",
  volume="140",
  number="2",
  pages="195--203",
  issn="0862-7959"
}