Detail publikace

STABILITY AND EXPONENTIAL STABILITY OF LINEAR DISCRETE SYSTEMS WITH CONSTANT COEFFICIENTS AND SINGLE DELAY

DIBLÍK, J. KHUSAINOV, D. BAŠTINEC, J. SIRENKO, A.

Originální název

STABILITY AND EXPONENTIAL STABILITY OF LINEAR DISCRETE SYSTEMS WITH CONSTANT COEFFICIENTS AND SINGLE DELAY

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

The paper investigates the exponential stability and exponential estimate of the norms of solutions to a linear system of difference equations with single delay \begin{equation*} x\left( {k+1} \right)=Ax\left( k \right)+Bx\left( {k-m} \right), \quad k=0,1,\dots \end{equation*} where $A$, $B$ are square constant matrices and $m\in\mathbb{N}$. Sufficient conditions for exponential stability are derived using the method of Lyapunov functions and its efficiency is demonstrated by examples.

Klíčová slova

Stability; Lyapunov function; delay; discrete system; matrix equation.

Autoři

DIBLÍK, J.; KHUSAINOV, D.; BAŠTINEC, J.; SIRENKO, A.

Rok RIV

2015

Vydáno

8. 8. 2015

Nakladatel

Elsevier

ISSN

0096-3003

Periodikum

APPLIED MATHEMATICS AND COMPUTATION

Ročník

269

Číslo

1

Stát

Spojené státy americké

Strany od

9

Strany do

16

Strany počet

8

URL

BibTex

@article{BUT116952,
  author="Josef {Diblík} and Denys {Khusainov} and Jaromír {Baštinec} and Andrii {Sirenko}",
  title="STABILITY AND EXPONENTIAL  STABILITY OF LINEAR DISCRETE SYSTEMS WITH CONSTANT COEFFICIENTS AND SINGLE DELAY",
  journal="APPLIED MATHEMATICS AND COMPUTATION",
  year="2015",
  volume="269",
  number="1",
  pages="9--16",
  doi="10.1016/j.amc.2015.07.037",
  issn="0096-3003",
  url="http://www.sciencedirect.com/science/article/pii/S0096300315009492"
}