Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
MARTINÁSEK, Z. ZEMAN, V. MALINA, L. MARTINÁSEK, J.
Originální název
k-Nearest Neighbors Algorithm in Profiling Power Analysis Attacks
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Power analysis presents the typical example of successful attacks against trusted cryptographic devices such as RFID (Radio-Frequency IDentifications) and contact smart cards. In recent years, the cryptographic community has explored new approaches in power analysis based on machine learning models such as Support Vector Machine (SVM), RF (Random Forest) and Multi-Layer Perceptron (MLP). In this paper, we made an extensive comparison of machine learning algorithms in the power analysis. For this purpose, we implemented a verification program that always chooses the optimal settings of individual machine learning models in order to obtain the best classification accuracy. In our research, we used three datasets, the first contains the power traces of an unprotected AES (Advanced Encryption Standard) implementation. The second and third datasets are created independently from public available power traces corresponding to a masked AES implementation (DPA Contest v4). The obtained results revealed some interesting facts, namely, an elementary \textit{k}-NN (\textit{k}-Nearest Neighbors) algorithm, which has not been commonly used in power analysis yet, shows great application potential in practice.
Klíčová slova
Power Analysis; Machine Learning; Template Attack; Comparison; Smart Cards
Autoři
MARTINÁSEK, Z.; ZEMAN, V.; MALINA, L.; MARTINÁSEK, J.
Vydáno
1. 6. 2016
ISSN
1210-2512
Periodikum
Radioengineering
Ročník
1
Číslo
Stát
Česká republika
Strany od
11
Strany do
28
Strany počet
19
BibTex
@article{BUT118680, author="Zdeněk {Martinásek} and Václav {Zeman} and Lukáš {Malina} and Josef {Martinásek}", title="k-Nearest Neighbors Algorithm in Profiling Power Analysis Attacks", journal="Radioengineering", year="2016", volume="1", number="1", pages="11--28", doi="10.13164/re.2016.0365", issn="1210-2512" }