Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
DRAHOŠOVÁ, M. HULVA, J. SEKANINA, L.
Originální název
Indirectly Encoded Fitness Predictors Coevolved with Cartesian Programs
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
We investigate coevolutionary Cartesian genetic programming that coevolves fitness predictors in order to diminish the number of target objective vector (TOV) evaluations, needed to obtain a satisfactory solution, to reduce the computational cost of evolution. This paper introduces the use of coevolution of fitness predictors in CGP with a new type of indirectly encoded predictors. Indirectly encoded predictors are operated using the CGP and provide a variable number of TOVs used for solution evaluation during the coevolution. It is shown in 5 symbolic regression problems that the proposed predictors are able to adapt the size of TOVs array in response to a particular training data set.
Klíčová slova
coevolution, cartesian genetic programming, fitness prediction, symbolic regression
Autoři
DRAHOŠOVÁ, M.; HULVA, J.; SEKANINA, L.
Rok RIV
2015
Vydáno
15. 3. 2015
Nakladatel
Springer International Publishing
Místo
Berlin
ISBN
978-3-319-16500-4
Kniha
Genetic Programming
Edice
Lecture Notes in Computer Science
Strany od
113
Strany do
125
Strany počet
13
URL
http://dx.doi.org/10.1007/978-3-319-16501-1_10
BibTex
@inproceedings{BUT119803, author="Michaela {Drahošová} and Jiří {Hulva} and Lukáš {Sekanina}", title="Indirectly Encoded Fitness Predictors Coevolved with Cartesian Programs", booktitle="Genetic Programming", year="2015", series="Lecture Notes in Computer Science", volume="9025", pages="113--125", publisher="Springer International Publishing", address="Berlin", doi="10.1007/978-3-319-16501-1\{_}10", isbn="978-3-319-16500-4", url="http://dx.doi.org/10.1007/978-3-319-16501-1_10" }