Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
HRBÁČEK, R.
Originální název
Parallel Multi-Objective Evolutionary Design of Approximate Circuits
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Evolutionary design of digital circuits has been well established in recent years. Besides correct functionality, the demands placed on current circuits include the area of the circuit and its power consumption. By relaxing the functionality requirement, one can obtain more efficient circuits in terms of the area or power consumption at the cost of an error introduced to the output of the circuit. As a result, a variety of trade-offs between error and efficiency can be found. In this paper, a multiobjective evolutionary algorithm for the design of approximate digital circuits is proposed. The scalability of the evolutionary design has been recently improved using parallel implementation of the fitness function and by employing spatially structured evolutionary algorithms. The proposed multiobjective approach uses Cartesian Genetic Programming for the circuit representation and a modified NSGA-II algorithm. Multiple isolated islands are evolving in parallel and the populations are periodically merged and new populations are distributed across the islands. The method is evaluated in the task of approximate arithmetical circuits design.
Klíčová slova
Cartesian Genetic Programming, Parallel Evolutionary Al- gorithms, Multi-objective Optimization, Cluster, Combina- tional Circuit Design, Approximate Circuits
Autoři
Rok RIV
2015
Vydáno
11. 7. 2015
Nakladatel
Association for Computing Machinery
Místo
New York
ISBN
978-1-4503-3472-3
Kniha
GECCO '15 Proceedings of the 2015 conference on Genetic and evolutionary computation
Strany od
687
Strany do
694
Strany počet
8
URL
https://www.fit.vut.cz/research/publication/10815/
BibTex
@inproceedings{BUT119822, author="Radek {Hrbáček}", title="Parallel Multi-Objective Evolutionary Design of Approximate Circuits", booktitle="GECCO '15 Proceedings of the 2015 conference on Genetic and evolutionary computation", year="2015", pages="687--694", publisher="Association for Computing Machinery", address="New York", doi="10.1145/2739480.2754785", isbn="978-1-4503-3472-3", url="https://www.fit.vut.cz/research/publication/10815/" }