Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
HYRŠ, M. SCHWARZ, J.
Originální název
Elliptical and Archimedean Copulas in Estimation of Distribution Algorithm with Model Migration.
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Estimation of distribution algorithms (EDAs) are stochastic optimization techniques that are based on building and sampling a probability model. Copula theory provides methods that simplify the estimation of a probability model. An island-based version of copula-based EDA with probabilistic model migration (mCEDA) was tested on a set of well-known standard optimization benchmarks in the continuous domain. We investigated two families of copulas - Archimedean and elliptical. Experimental results confirm that this concept of model migration (mCEDA) yields better convergence as compared with the sequential version (sCEDA) and other recently published copula-based EDAs.
Klíčová slova
Estimation of Distribution Algorithms, Copula Theory, Parallel EDA, Island-based Model, Multivariate Copula Sampling, Migration of Probabilistic Models.
Autoři
HYRŠ, M.; SCHWARZ, J.
Rok RIV
2015
Vydáno
12. 11. 2015
Nakladatel
SciTePress - Science and Technology Publications
Místo
Lisbon
ISBN
978-989-758-157-1
Kniha
Proceedings of the 7th International Joint Conference on Computational Intelligence (IJCCI 2015)
Strany od
212
Strany do
219
Strany počet
8
URL
https://www.fit.vut.cz/research/publication/11013/
BibTex
@inproceedings{BUT119927, author="Martin {Hyrš} and Josef {Schwarz}", title="Elliptical and Archimedean Copulas in Estimation of Distribution Algorithm with Model Migration.", booktitle="Proceedings of the 7th International Joint Conference on Computational Intelligence (IJCCI 2015)", year="2015", pages="212--219", publisher="SciTePress - Science and Technology Publications", address="Lisbon", isbn="978-989-758-157-1", url="https://www.fit.vut.cz/research/publication/11013/" }