Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
JELÍNEK, A. ŽALUD, L. JÍLEK, T.
Originální název
Fast total least squares vectorization
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
This paper proposes a novel algorithm for the vectorization of ordered sets of points, named Fast Total Least Squares (FTLS) vectorization. The emphasis was put on low computational complexity, which allows it to be run online on a mobile device at a speed comparable to the fastest algorithms, such as the Douglas–Peucker (DP) algorithm, while maintaining a much higher quality of the approximation. Our approach is based on the total least squares method, therefore all the points from the cloud contribute to its approximation. This leads to better utilization of the information contained in the point cloud, compared to those algorithms based on point elimination, such as DP. Several experiments and performance comparisons are presented to demonstrate the most important attributes of the FTLS algorithm.
Klíčová slova
Point cloud;Vectorization;Least squares;Robotics;Linear regression
Autoři
JELÍNEK, A.; ŽALUD, L.; JÍLEK, T.
Vydáno
1. 4. 2019
Nakladatel
Springer Berlin Heidelberg
ISSN
1861-8219
Periodikum
Journal of Real-Time Image Processing
Ročník
11
Číslo
1
Stát
Spolková republika Německo
Strany od
459
Strany do
475
Strany počet
17
URL
https://link.springer.com/article/10.1007/s11554-016-0562-6
BibTex
@article{BUT120961, author="Aleš {Jelínek} and Luděk {Žalud} and Tomáš {Jílek}", title="Fast total least squares vectorization", journal="Journal of Real-Time Image Processing", year="2019", volume="11", number="1", pages="459--475", doi="10.1007/s11554-016-0562-6", issn="1861-8219", url="https://link.springer.com/article/10.1007/s11554-016-0562-6" }