Detail publikace
THE NONLOCAL BOUNDARY VALUE PROBLEMS FOR STRONGLY SINGULAR HIGHER-ORDER NONLINEAR FUNCTIONAL-DIFFERENTIAL EQUATIONS
MUKHIGULASHVILI, S.
Originální název
THE NONLOCAL BOUNDARY VALUE PROBLEMS FOR STRONGLY SINGULAR HIGHER-ORDER NONLINEAR FUNCTIONAL-DIFFERENTIAL EQUATIONS
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
A priori boundedness principle is proven for the nonlocal boundary value problems for strongly singular higher-order nonlinear functional-differential equations. Several suicient conditions of solvability of the Dirichlet problem under consideration are derived from the a priori boundedness principle. The proof of the a priori boundedness principle is based on the Agarwal{Kiguradze type theorems, which guarantee the existence of the Fredholm property for strongly singular higher-order linear differential equations with argument deviations under the nonlocal boundary conditions.
Klíčová slova
Higher order functional-differential equations, Dirichlet boundary value problem, strong singularity, Fredholm property, a priori boundedness principle.
Autoři
MUKHIGULASHVILI, S.
Rok RIV
2015
Vydáno
31. 12. 2015
Nakladatel
Udine University
Místo
Udine
ISSN
1126-8042
Periodikum
Italian Journal of Pure and Applied Mathematics
Ročník
2015
Číslo
35
Stát
Italská republika
Strany od
23
Strany do
50
Strany počet
28
BibTex
@article{BUT122234,
author="Sulkhan {Mukhigulashvili}",
title="THE NONLOCAL BOUNDARY VALUE PROBLEMS FOR STRONGLY SINGULAR HIGHER-ORDER NONLINEAR FUNCTIONAL-DIFFERENTIAL EQUATIONS",
journal="Italian Journal of Pure and Applied Mathematics",
year="2015",
volume="2015",
number="35",
pages="23--50",
issn="1126-8042"
}