Detail publikace

THE NONLOCAL BOUNDARY VALUE PROBLEMS FOR STRONGLY SINGULAR HIGHER-ORDER NONLINEAR FUNCTIONAL-DIFFERENTIAL EQUATIONS

MUKHIGULASHVILI, S.

Originální název

THE NONLOCAL BOUNDARY VALUE PROBLEMS FOR STRONGLY SINGULAR HIGHER-ORDER NONLINEAR FUNCTIONAL-DIFFERENTIAL EQUATIONS

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

A priori boundedness principle is proven for the nonlocal boundary value problems for strongly singular higher-order nonlinear functional-differential equations. Several suicient conditions of solvability of the Dirichlet problem under consideration are derived from the a priori boundedness principle. The proof of the a priori boundedness principle is based on the Agarwal{Kiguradze type theorems, which guarantee the existence of the Fredholm property for strongly singular higher-order linear differential equations with argument deviations under the nonlocal boundary conditions.

Klíčová slova

Higher order functional-differential equations, Dirichlet boundary value problem, strong singularity, Fredholm property, a priori boundedness principle.

Autoři

MUKHIGULASHVILI, S.

Rok RIV

2015

Vydáno

31. 12. 2015

Nakladatel

Udine University

Místo

Udine

ISSN

1126-8042

Periodikum

Italian Journal of Pure and Applied Mathematics

Ročník

2015

Číslo

35

Stát

Italská republika

Strany od

23

Strany do

50

Strany počet

28

BibTex

@article{BUT122234,
  author="Sulkhan {Mukhigulashvili}",
  title="THE NONLOCAL BOUNDARY VALUE PROBLEMS FOR STRONGLY SINGULAR HIGHER-ORDER NONLINEAR FUNCTIONAL-DIFFERENTIAL EQUATIONS",
  journal="Italian Journal of Pure and Applied Mathematics",
  year="2015",
  volume="2015",
  number="35",
  pages="23--50",
  issn="1126-8042"
}