Detail publikace

Asymptotic stability regions for certain two parametric full-term linear difference equation

TOMÁŠEK, P.

Originální název

Asymptotic stability regions for certain two parametric full-term linear difference equation

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

We introduce an efficient form of necessary and sufficient conditions for asymptotic stability of the k-th order linear difference equation y(n+k)+a\sum_{j=1}^{k-1}(-1)^j y(n+k-j) + by(n)=0, where a,b are real parameters. The asymptotic stability region in (a,b) plane for this equation will be constructed and discussed with respect to some related linear difference equations.

Klíčová slova

Difference equation; Stability; The Schur-Cohn criterion

Autoři

TOMÁŠEK, P.

Vydáno

1. 10. 2016

Nakladatel

Springer

Místo

New York

ISBN

978-3-319-32855-3

Kniha

Differential and Difference Equations with Applications

Edice

Springer Proceedings in Mathematics and Statistics

Číslo edice

164

ISSN

2194-1009

Periodikum

Springer Proceedings in Mathematics & Statistics

Ročník

164

Stát

Spolková republika Německo

Strany od

323

Strany do

330

Strany počet

8

BibTex

@inproceedings{BUT122444,
  author="Petr {Tomášek}",
  title="Asymptotic stability regions for certain two parametric full-term linear difference equation",
  booktitle="Differential and Difference Equations with Applications",
  year="2016",
  series="Springer Proceedings in Mathematics and Statistics",
  journal="Springer Proceedings in Mathematics & Statistics",
  volume="164",
  number="164",
  pages="323--330",
  publisher="Springer",
  address="New York",
  doi="10.1007/978-3-319-32857-7\{_}30",
  isbn="978-3-319-32855-3",
  issn="2194-1009"
}