Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KENYERES, M. KENYERES, J. ŠKORPIL, V.
Originální název
The Distributed Convergence Classifier Using the Finite Difference
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
The paper presents a novel distributed classifier of the convergence, which allows to detect the convergence/the divergence of a distributed converging algorithm. Since this classifier is supposed to be primarily applied in wireless sensor networks, its proposal makes provision for the character of these networks. The classifier is based on the mechanism of comparison of the forward finite differences from two consequent iterations. The convergence/the divergence is classifiable only in terms of the changes of the inner states of a particular node and therefore, no message redundancy is required for its proper functionality.
Klíčová slova
Distributed computing, wireless sensor networks, average consensus, distributed classifier
Autoři
KENYERES, M.; KENYERES, J.; ŠKORPIL, V.
Vydáno
1. 4. 2016
ISSN
1210-2512
Periodikum
Radioengineering
Ročník
25
Číslo
1
Stát
Česká republika
Strany od
148
Strany do
155
Strany počet
9
BibTex
@article{BUT122510, author="Martin {Kenyeres} and Jozef {Kenyeres} and Vladislav {Škorpil}", title="The Distributed Convergence Classifier Using the Finite Difference", journal="Radioengineering", year="2016", volume="25", number="1", pages="148--155", doi="10.13164/re.2016.0148", issn="1210-2512" }