Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
BRANČÍK, L. KOLÁŘOVÁ, E.
Originální název
Simulation of Multiconductor Transmission Lines with Random Parameters via Stochastic Differential Equations Approach.
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
This article addresses a method for the simulation of multiconductor transmission lines (MTLs) with fluctuating parameters based on the theory of stochastic differential equations (SDEs). Specifically, confidence intervals of an MTL models stochastic responses are effectively evaluated. First, the MTLs deterministic model with lumped parameters, based on generalized PI sections connected in cascade, is formulated and described through a state variable method, which results in a vector ordinary differential equation (ODE) in the time domain. A vector SDE is then developed by incorporating the respective stochastic processes into its deterministic counterpart. Next, the first two moments of the stochastic processes are calculated via the solution of respective Lyapunov-like ODEs, to assess expectations and the variances of stochastic responses, and also to determine relevant confidence intervals. A statistical processing of individual stochastic trajectories is used to validate the results.
Klíčová slova
multiconductor transmission line; random parameter; stochastic differential equation; variance; confidence interval; MATLAB
Autoři
BRANČÍK, L.; KOLÁŘOVÁ, E.
Vydáno
1. 6. 2016
Nakladatel
SAGE Publishing
Místo
London, United Kingdom
ISSN
0037-5497
Periodikum
SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL
Ročník
92
Číslo
6
Stát
Spojené království Velké Británie a Severního Irska
Strany od
521
Strany do
533
Strany počet
13
URL
http://sim.sagepub.com/content/92/6/521.full.pdf?ijkey=0hH1aBawL74zJaX&keytype=finite
BibTex
@article{BUT125050, author="Lubomír {Brančík} and Edita {Kolářová}", title="Simulation of Multiconductor Transmission Lines with Random Parameters via Stochastic Differential Equations Approach.", journal="SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL", year="2016", volume="92", number="6", pages="521--533", doi="10.1177/0037549716645198", issn="0037-5497", url="http://sim.sagepub.com/content/92/6/521.full.pdf?ijkey=0hH1aBawL74zJaX&keytype=finite" }