Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
POVODA, L. BURGET, R. MAŠEK, J. UHER, V. DUTTA, M.
Originální název
Optimization Methods in Emotion Recognition System
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Emotions play big role in our everyday communication and contain important information. This work describes a novel method of automatic emotion recognition from textual data. The method is based on well-known data mining techniques, novel approach based on parallel run of SVM (Support Vector Machine) classifiers, text preprocessing and 3 optimization methods: sequential elimination of attributes, parameter optimization based on token groups, and method of extending train data sets during practical testing and production release final tuning. We outperformed current state of the art methods and the results were validated on bigger data sets (3346 manually labelled samples) which is less prone to overfitting when compared to related works. The accuracy achieved in this work is 86.89%for recognition of 5 emotional classes. The experiments were performed in the real world helpdesk environment, was processing Czech language but the proposed methodology is general and can be applied to many different languages.
Klíčová slova
Czech; Emotion classification; Emotion detection; Emotion recognition; Text mining
Autoři
POVODA, L.; BURGET, R.; MAŠEK, J.; UHER, V.; DUTTA, M.
Vydáno
3. 9. 2016
ISSN
1805-9600
Periodikum
Radioengineering
Ročník
25
Číslo
3
Stát
Česká republika
Strany od
565
Strany do
572
Strany počet
8
BibTex
@article{BUT127072, author="Lukáš {Povoda} and Radim {Burget} and Jan {Mašek} and Václav {Uher} and Malay Kishore {Dutta}", title="Optimization Methods in Emotion Recognition System", journal="Radioengineering", year="2016", volume="25", number="3", pages="565--572", doi="10.13164/re.2016.0565", issn="1805-9600" }