Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
MALACH, T. POMĚNKOVÁ, J.
Originální název
Learning of a Robusted Nearest Neighbor Classifier Using Multiple Training Data
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This paper deals with the application of face recognition in surveillance CCTV systems and effective usage of so called recognition clues. These clues are enrollment of multiple training face images and their usages in classifier training and real-time management of template database. A survey on classifiers from perspective of practical application is given resulting in the defense of nearest neighbor based classifiers. They are competitive with state of the art classifiers and are suitable for practical application. Template creation using multiple training face images and enhancement of NN-based classifier performance is achieved by novel approach. It consist of quantile interval method for template creation and robusted NNbased classifier using spatial templates with soft boundaries. We evaluate proposed recognition framework on highly representative IFaViD dataset. Proposed framework outperforms state of the art approaches.
Klíčová slova
Template creation; Nearest neighbor; Multiple training data; Surveillance face recognition.
Autoři
MALACH, T.; POMĚNKOVÁ, J.
Vydáno
25. 5. 2016
Místo
Bratislava
ISBN
978-1-4673-9554-0
Kniha
Proceedings The 23rd International Conference on Systems, Signals and Image Processing
Strany od
47
Strany do
50
Strany počet
4
URL
https://ieeexplore.ieee.org/document/7502701
BibTex
@inproceedings{BUT127619, author="Tobiáš {Malach} and Jitka {Dluhá}", title="Learning of a Robusted Nearest Neighbor Classifier Using Multiple Training Data", booktitle="Proceedings The 23rd International Conference on Systems, Signals and Image Processing", year="2016", pages="47--50", address="Bratislava", doi="10.1109/IWSSIP.2016.7502701", isbn="978-1-4673-9554-0", url="https://ieeexplore.ieee.org/document/7502701" }