Detail publikace

Representation of solutions of delayed difference equations with linear parts given by pairwise permutable matrices via Z-transform

POSPÍŠIL, M.

Originální název

Representation of solutions of delayed difference equations with linear parts given by pairwise permutable matrices via Z-transform

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

In the present paper, a system of nonhomogeneous linear difference equations with any finite number of constant delays and linear parts given by pairwise permutable matrices is considered. Representation of its solution is derived in a form of a matrix polynomial using the Z-transform. So the recent results for one and two delays, and an inductive formula for multiple delays are unified. The representation is suitable for theoretical as well as practical computations.

Klíčová slova

Discrete system; Z-transform; multiple delays; matrix polynomial

Autoři

POSPÍŠIL, M.

Vydáno

1. 2. 2017

ISSN

0096-3003

Periodikum

APPLIED MATHEMATICS AND COMPUTATION

Ročník

294

Číslo

3

Stát

Spojené státy americké

Strany od

180

Strany do

194

Strany počet

15

BibTex

@article{BUT128622,
  author="Michal {Pospíšil}",
  title="Representation of solutions of delayed difference equations with linear parts given by pairwise permutable matrices via Z-transform",
  journal="APPLIED MATHEMATICS AND COMPUTATION",
  year="2017",
  volume="294",
  number="3",
  pages="180--194",
  doi="10.1016/j.amc.2016.09.019",
  issn="0096-3003"
}