Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
POSPÍŠIL, M.
Originální název
Representation of solutions of delayed difference equations with linear parts given by pairwise permutable matrices via Z-transform
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
In the present paper, a system of nonhomogeneous linear difference equations with any finite number of constant delays and linear parts given by pairwise permutable matrices is considered. Representation of its solution is derived in a form of a matrix polynomial using the Z-transform. So the recent results for one and two delays, and an inductive formula for multiple delays are unified. The representation is suitable for theoretical as well as practical computations.
Klíčová slova
Discrete system; Z-transform; multiple delays; matrix polynomial
Autoři
Vydáno
1. 2. 2017
ISSN
0096-3003
Periodikum
APPLIED MATHEMATICS AND COMPUTATION
Ročník
294
Číslo
3
Stát
Spojené státy americké
Strany od
180
Strany do
194
Strany počet
15
BibTex
@article{BUT128622, author="Michal {Pospíšil}", title="Representation of solutions of delayed difference equations with linear parts given by pairwise permutable matrices via Z-transform", journal="APPLIED MATHEMATICS AND COMPUTATION", year="2017", volume="294", number="3", pages="180--194", doi="10.1016/j.amc.2016.09.019", issn="0096-3003" }