Detail publikace

LAW OF INERTIA FOR THE FACTORIZATION OF CUBIC POLYNOMIALS - THE CASE OF DISCRIMINANTS DIVISIBLE BY THREE

KLAŠKA, J. SKULA, L.

Originální název

LAW OF INERTIA FOR THE FACTORIZATION OF CUBIC POLYNOMIALS - THE CASE OF DISCRIMINANTS DIVISIBLE BY THREE

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

In this paper we extend our recent results concerning the validity of the law of inertia for the factorization of cubic polynomials over the Galois field $F_p$, p being a prime. As the main result, the following theorem will be proved: Let $D\in Z$ and let $C_D$ be the set of all cubic polynomials $x^3 +ax^2 +bx+c\in Z[x]$ with a discriminant equal to $D$. If $D$ is square-free and $3\nmid h(-3D)$ where $h(-3D)$ is the class number of $Q(\sqrt(-3D))$, then all cubic polynomials in $C_D$ have the same type of factorization over any Galois field $F_p$ where $p$ is a prime, $p > 3$.

Klíčová slova

cubic polynomial, factorization, Galois field

Autoři

KLAŠKA, J. SKULA, L.

Vydáno

24. 11. 2016

Nakladatel

Slovenská akademie věd

Místo

SK

ISSN

0139-9918

Periodikum

Mathematica Slovaca

Ročník

66

Číslo

4

Stát

Slovenská republika

Strany od

1019

Strany do

1027

Strany počet

9

BibTex

@article{BUT129973,
  author="Jiří {Klaška} and Ladislav {Skula}",
  title="LAW OF INERTIA FOR THE FACTORIZATION OF CUBIC POLYNOMIALS - THE CASE OF DISCRIMINANTS DIVISIBLE BY THREE",
  journal="Mathematica Slovaca",
  year="2016",
  volume="66",
  number="4",
  pages="1019--1027",
  doi="10.1515/ms-2015-0199",
  issn="0139-9918"
}