Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
PAPEŽ, M.
Originální název
A Rao-Blackwellized particle filter to estimate the time-varying noise parameters in non-linear state-space models using alternative stabilized forgetting
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
The identification of slowly-varying noise parameters in non-linear state-space models constitutes a long-standing problem. The present paper addresses this task using the Bayesian framework and sequential Monte Carlo (SMC) methodology. The proposed approach utilizes an algebraic structure of the model so that the Rao-Blackwellization of the parameters can be performed, thus involving a finite-dimensional sufficient statistic for each particle trajectory into the resulting algorithm. However, relying on standard SMC methods, such techniques are known to suffer from the particle path degeneracy problem. To counteract this issue, it is proposed to use alternative stabilized forgetting, which compensates for the incomplete knowledge of a model of parameter variations by finding a compromise between possible predictive densities of the parameters. An experimental study proves the efficiency of the introduced Rao-Blackwellized particle filter (RBPF) compared to some recently proposed approaches.
Klíčová slova
Non-linear state-space models, sequential Monte Carlo, Rao-Blackwellized particle filter, recursive Bayesian parameter estimation, parameter identification
Autoři
Vydáno
12. 12. 2016
Nakladatel
Institute of Electrical and Electronics Engineers
Místo
Limassol
ISBN
978-1-5090-5844-0
Kniha
Proceedings of the 16th International Symposium on Signal Processing and Information Technology, ISSPIT 2016
Strany od
229
Strany do
234
Strany počet
6
BibTex
@inproceedings{BUT131672, author="Milan {Papež}", title="A Rao-Blackwellized particle filter to estimate the time-varying noise parameters in non-linear state-space models using alternative stabilized forgetting", booktitle="Proceedings of the 16th International Symposium on Signal Processing and Information Technology, ISSPIT 2016", year="2016", pages="229--234", publisher="Institute of Electrical and Electronics Engineers", address="Limassol", doi="10.1109/ISSPIT.2016.7886040", isbn="978-1-5090-5844-0" }