Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KESIRAJU, S. BURGET, L. SZŐKE, I. ČERNOCKÝ, J.
Originální název
Learning document representations using subspace multinomial model
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Subspace multinomial model (SMM) is a log-linear model and can be used for learning low dimensional continuous representation for discrete data. SMMand its variants have been used for speaker verification based on prosodic features and phonotactic language recognition. In this paper, we propose a new variant of SMM that introduces sparsity and call the resulting model as `1 SMM. We show that `1 SMM can be used for learning document representations that are helpful in topic identification or classification and clustering tasks. Our experiments in document classification show that SMM achieves comparable results to models such as latent Dirichlet allocation and sparse topical coding, while having a useful property that the resulting document vectors are Gaussian distributed.
Klíčová slova
Document representation, subspace modelling, topic identification, latent topic discovery
Autoři
KESIRAJU, S.; BURGET, L.; SZŐKE, I.; ČERNOCKÝ, J.
Vydáno
8. 9. 2016
Nakladatel
International Speech Communication Association
Místo
San Francisco
ISBN
978-1-5108-3313-5
Kniha
Proceedings of Interspeech 2016
Strany od
700
Strany do
704
Strany počet
5
URL
https://www.researchgate.net/publication/307889473_Learning_Document_Representations_Using_Subspace_Multinomial_Model
BibTex
@inproceedings{BUT132598, author="Santosh {Kesiraju} and Lukáš {Burget} and Igor {Szőke} and Jan {Černocký}", title="Learning document representations using subspace multinomial model", booktitle="Proceedings of Interspeech 2016", year="2016", pages="700--704", publisher="International Speech Communication Association", address="San Francisco", doi="10.21437/Interspeech.2016-1634", isbn="978-1-5108-3313-5", url="https://www.researchgate.net/publication/307889473_Learning_Document_Representations_Using_Subspace_Multinomial_Model" }