Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ŠAFAŘÍK, J. DIBLÍK, J.
Originální název
Weakly Delayed Difference Systems in ${\mathbb R^3$ and their Solution
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
The paper is concerned with a weakly delayed difference system $$x(k+1) = Ax(k) + Bx(k-1)$$ where $k = 0, 1, \dots$ and $A = (a_{ij})_{i,j=1}^{3}$, $B = (b_{ij})_{i,j=1}^{3}$ are constant matrices. It is demonstrated that the initial delayed system can be transformed into a linear system without delay and, moreover, that all the eigenvalues of the matrix of the linear terms of this system can be obtained as the union of all the eigenvalues of matrices $A$ and $B$.\\ In such a case, the new linear system without delay can be solved easily, e.g., by utilizing the well-known Putzer algorithm with one of the possible cases being considered in the paper.
Klíčová slova
Discrete system, weak delay, initial problem, Putzer algorithm.
Autoři
ŠAFAŘÍK, J.; DIBLÍK, J.
Vydáno
16. 6. 2016
Nakladatel
Univerzita obrany v Brně
Místo
Brno
ISBN
978-80-7231-400-3
Kniha
MITAV 2016 (Matematika, informační technologie a aplikované vědy), Post-conference proceedings of extended versions of selected papers
Číslo edice
1
Strany od
84
Strany do
104
Strany počet
21
URL
http://mitav.unob.cz/
BibTex
@inproceedings{BUT132881, author="Jan {Šafařík} and Josef {Diblík}", title="Weakly Delayed Difference Systems in ${\mathbb R^3$ and their Solution", booktitle="MITAV 2016 (Matematika, informační technologie a aplikované vědy), Post-conference proceedings of extended versions of selected papers", year="2016", number="1", pages="84--104", publisher="Univerzita obrany v Brně", address="Brno", isbn="978-80-7231-400-3", url="http://mitav.unob.cz/" }