Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KALASOVÁ, D. MAŠEK, J. ZIKMUND, T. SPURNÝ, P. HALODA, J. BURGET, R. KAISER, J.
Originální název
Segmentation of multi-phase object applying trainable segmentation
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
In X-ray computed tomography (CT), post-processing of acquired data is necessary for obtaining quantitative information of the object. As initial step, it is necessary to segment different materials of the sample. The easiest and standardly used segmentation method is based on global thresholding according to histogram, but it works well only if histogram with multi-modal character where the intensity is distributed to the separate count peaks. In this paper, we show the possibility of segmentation of tomographic data using trainable segmentation on data, where standard global thresholding fails. Trainable segmentation is a method that combines a collection of machine learning algorithms (decision tree, neural network, etc.) with a set of selected image features to produce binary pixel-based segmentation. This method is demonstrated on a sample of meteorite consisting of multiple phases (silicates, metals, sulphides), where knowledge of volumes of different materials is important for non-destructive study of modal phase composition, meteorite microstructures and identification of lithologies with different origin and evolution.
Klíčová slova
segmentation, trainable segmentation, machine learning, image processing
Autoři
KALASOVÁ, D.; MAŠEK, J.; ZIKMUND, T.; SPURNÝ, P.; HALODA, J.; BURGET, R.; KAISER, J.
Vydáno
9. 2. 2017
Nakladatel
NDT.net
ISSN
1435-4934
Periodikum
The e-Journal of Nondestructive Testing
Číslo
2017
Stát
Spolková republika Německo
Strany od
1
Strany do
6
Strany počet
URL
http://www.ndt.net/events/iCT2017/app/content/index.php?eventID=37
BibTex
@article{BUT133386, author="Dominika {Kalasová} and Jan {Mašek} and Tomáš {Zikmund} and Pavel {Spurný} and Jakub {Haloda} and Radim {Burget} and Jozef {Kaiser}", title="Segmentation of multi-phase object applying trainable segmentation", journal="The e-Journal of Nondestructive Testing", year="2017", number="2017", pages="1--6", issn="1435-4934", url="http://www.ndt.net/events/iCT2017/app/content/index.php?eventID=37" }