Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
POVODA, L. BURGET, R. DUTTA, M. K. SENGAR, N.
Originální název
Genetic Optimization of Big Data Sentiment Analysis
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This paper deals with opinion mining from unstructured textual documents. The proposed method focuses on approach with minimum preliminary requirements about the knowledge of the analysed language and thus it can be deployed to any language. The proposed method builds on artificial intelligence, which consists of Support Vector Machines classifier, Big Data analysis and genetic algorithm optimization. To make the optimization feasible together with big data approach we have proposed GA operators, which significantly accelerate conversion to the accurate solutions. In this work we outperformed the traditional approaches (which use language dependent text preprocessing) for text valence classification with the highest achieved accuracy 90.09 %. The data set for validation was Czech texts.
Klíčová slova
artificial intelligence; big data; data mining; opinion mining; sentiment analysis; text mining; text valence classification
Autoři
POVODA, L.; BURGET, R.; DUTTA, M. K.; SENGAR, N.
Vydáno
2. 2. 2017
ISBN
978-1-5090-2796-5
Kniha
2017 4th International Conference on Signal Processing and Integrated Networks (SPIN)
Strany od
141
Strany do
144
Strany počet
4
URL
https://ieeexplore.ieee.org/document/8049932
BibTex
@inproceedings{BUT133480, author="Lukáš {Povoda} and Radim {Burget} and Malay Kishore {Dutta} and Namita {Sengar}", title="Genetic Optimization of Big Data Sentiment Analysis", booktitle="2017 4th International Conference on Signal Processing and Integrated Networks (SPIN)", year="2017", pages="141--144", doi="10.1109/SPIN.2017.8049932", isbn="978-1-5090-2796-5", url="https://ieeexplore.ieee.org/document/8049932" }