Detail publikace

Law of inertia for the factorization of cubic polynomials - the case of primes 2 and 3

KLAŠKA, J. SKULA, L.

Originální název

Law of inertia for the factorization of cubic polynomials - the case of primes 2 and 3

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

Let $D \in \mathbb Z$ and let $C_D$ be the set of all monic cubic polynomials $x^3+ax^2+bx+c\in \mathbb Z[x]$ with the discriminant equal to $D$. Along the line of our preceding papers, the following Theorem has been proved: If $D$ is square-free and $3 \nmit h(-3D)$ where $h(-3D)$ is the class number of $\mathbbQ( \sqrt(-3D)$, then all polynomials in $C_D$ have the same type of factorization over the Galois field $F_p$ where $p$ is a prime, $p > 3$. In this paper, we prove the validity of the above implication also for primes 2 and 3.

Klíčová slova

Cubic polynomial, type of factorization, discriminant

Autoři

KLAŠKA, J.; SKULA, L.

Vydáno

15. 3. 2017

Nakladatel

De Gruyter

Místo

Slovakia

ISSN

0139-9918

Periodikum

Mathematica Slovaca

Ročník

67

Číslo

1

Stát

Slovenská republika

Strany od

71

Strany do

82

Strany počet

12

BibTex

@article{BUT134703,
  author="Jiří {Klaška} and Ladislav {Skula}",
  title="Law of inertia for the factorization of cubic polynomials - the case of primes 2 and 3",
  journal="Mathematica Slovaca",
  year="2017",
  volume="67",
  number="1",
  pages="71--82",
  doi="10.1515/ms-2016-0248",
  issn="0139-9918"
}