Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
DIBLÍK, J. KÚDELČÍKOVÁ, M.
Originální název
Two classes of asymptotically different positive solutions to advanced differential equations via two different fixed-point principles
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
The paper considers a system of advanced-type functional differential equations $$ \dot{x}(t) = F(t,x^t) $$ where $F$ is a given functional, $x^t \in C([0,r],{\mathbb R}^n)$, $r>0$ and $x^t(\theta)=x(t+\theta)$, $\theta \in [0,r]$. Two different results on the existence of solutions, with coordinates bounded above and below by the coordinates of the given vector functions if $t\to\infty$, are proved using two different fixed-point principles. It is illustrated by examples that, applying both results simultaneously to the same equation yields two positive solutions asymptotically different for $t\to\infty$. The equation $$ \dot{x}(t) = \left(a+{b}/{t}\right)\,x(t+\tau) $$ where $a, \tau \in (0,\infty)$, $a<1/(\tau\e)$, $b \in {\mathbb R}$ are constants can serve as a linear example. The existence of a pair of positive solutions asymptotically different for $t\to\infty$ is proved and their asymptotic behavior is investigated. The results are also illustrated by a nonlinear equation.
Klíčová slova
Advanced differential equation, monotone iterative method, Schauder-Tychonoff theorem, positive solution, asymptotic behavior of solutions, nonlinear system.
Autoři
DIBLÍK, J.; KÚDELČÍKOVÁ, M.
Vydáno
6. 3. 2017
Nakladatel
John Wiley & Sons
ISSN
1099-1476
Periodikum
Mathematical Methods in the Applied Sciences
Ročník
40
Číslo
3
Stát
Spojené království Velké Británie a Severního Irska
Strany od
1422
Strany do
1437
Strany počet
16
URL
http://onlinelibrary.wiley.com/doi/10.1002/mma.4064/full
BibTex
@article{BUT137193, author="Josef {Diblík} and Mária {Kúdelčíková}", title="Two classes of asymptotically different positive solutions to advanced differential equations via two different fixed-point principles", journal="Mathematical Methods in the Applied Sciences", year="2017", volume="40", number="3", pages="1422--1437", doi="10.1002/mma.4064", issn="1099-1476", url="http://onlinelibrary.wiley.com/doi/10.1002/mma.4064/full" }