Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
RAJNOHA, M. BURGET, R. DUTTA, M.
Originální název
Handwriting Comenia Script Recognition with Convolutional Neural Network
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This paper deals with handwriting recognition (HWR) using artificial intelligence of so–called Comenia script - a modern handwritten font similar to block letters recently introduced at primary schools in the Czech Republic. This work describes a method how to extend a limited training set of handwritten letters and proposes a new method to increase stability and accuracy by artificially created image samples. We examined a large set of algorithms including a deep learning method for classification of the handwriting characters. The best results were achieved using a convolutional neural network, which achieved the accuracy or character recognition 90.04%
Klíčová slova
CNN; deep learning; handwriting recognition; HWR; OCR
Autoři
RAJNOHA, M.; BURGET, R.; DUTTA, M.
Vydáno
6. 7. 2017
Místo
Barcelona
ISBN
978-1-5090-3981-4
Kniha
40th Anniversary of International Conference on Telecommunications and Signal Processing (TSP)
Strany od
775
Strany do
779
Strany počet
5
URL
https://ieeexplore.ieee.org/document/8076093
BibTex
@inproceedings{BUT137770, author="Martin {Rajnoha} and Radim {Burget} and Malay Kishore {Dutta}", title="Handwriting Comenia Script Recognition with Convolutional Neural Network", booktitle="40th Anniversary of International Conference on Telecommunications and Signal Processing (TSP)", year="2017", pages="775--779", address="Barcelona", doi="10.1109/TSP.2017.8076093", isbn="978-1-5090-3981-4", url="https://ieeexplore.ieee.org/document/8076093" }