Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
HRABINA, M. SIGMUND, M.
Originální název
Feature comparison under different noise conditions for gunshot detection task
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Presented work investigates performance of three feature sets (LPC, LPCC and MFCC) in distinguishing gunshots from non-gunshot, mostly urban sounds under white noise conditions ranging from 30 dB to 0 dB with 10 dB step, including clean signal. Results show, that LPC coefficients are best at 30 dB with comparable results achieved by LPCC. MFCC are significantly better than others at 20 dB and 10 dB. Performance at 0 dB was balanced between LPC and MFCC – LPC had more true detections and MFCC achieved better score for false alarms.
Klíčová slova
gunshot detection, feature analysis, linear predictive coding coefficients, cepstrum, noise
Autoři
HRABINA, M.; SIGMUND, M.
Vydáno
28. 8. 2017
ISBN
978-80-214-5526-9
Kniha
Proceedings of IEEE Student Branch Conference Mikulov 2017
Edice
1
Strany od
29
Strany do
33
Strany počet
4
BibTex
@inproceedings{BUT138779, author="Martin {Hrabina} and Milan {Sigmund}", title="Feature comparison under different noise conditions for gunshot detection task", booktitle="Proceedings of IEEE Student Branch Conference Mikulov 2017", year="2017", series="1", pages="29--33", isbn="978-80-214-5526-9" }