Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
RAJMIC, P. NOVOSADOVÁ, M. DAŇKOVÁ, M.
Originální název
Piecewise-polynomial Signal Segmentation Using Convex Optimization
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
A method is presented for segmenting one-dimensional signal whose independent segments are modeled as polynomials, and which is corrupted by additive noise. The method is based on sparse modeling, the main part is formulated as a convex optimization problem and is solved by a proximal splitting algorithm. We perform experiments on simulated and real data and show that the method is capable of reliably finding breakpoints in the signal, but requires careful tuning of the regularization parameters and internal parameters. Finally, potential extensions are discussed.
Klíčová slova
Signal segmentation, Denoising, Sparsity, Piecewise-polynomial signal model, Convex optimization
Autoři
RAJMIC, P.; NOVOSADOVÁ, M.; DAŇKOVÁ, M.
Vydáno
31. 12. 2017
Nakladatel
Institute of Information Theory and Automation of the ASCR
Místo
Prague
ISSN
0023-5954
Periodikum
Kybernetika
Ročník
53
Číslo
6
Stát
Česká republika
Strany od
1131
Strany do
1149
Strany počet
19
URL
https://www.kybernetika.cz/content/2017/6/1131
BibTex
@article{BUT138857, author="Pavel {Rajmic} and Michaela {Novosadová} and Marie {Mangová}", title="Piecewise-polynomial Signal Segmentation Using Convex Optimization", journal="Kybernetika", year="2017", volume="53", number="6", pages="1131--1149", doi="10.14736/kyb-2017-6-1131", issn="0023-5954", url="https://www.kybernetika.cz/content/2017/6/1131" }