Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
SCHWARZ, J. OČENÁŠEK, J.
Originální název
ACCELERATED BAYESIAN OPTIMIZATION ALGORITHMS FOR ADVANCED HYPERGRAPH PARTITIONING, accepted paper
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
The paper summarizes our recent work on the design, analysis andapplications of the Bayesian optimization algorithm (BOA) and itsadvanced accelerated variants for solving complex - sometimesNP-complete - combinatorial optimization problems from circuit design.We review the methods for accelerating BOA for hypergraph-partitioningproblem. The first method accelerates the convergence of sequential BOAby utilizing specific knowledge about the optimized problem and thesecond method is based on the parallel construction of a probabilisticmodel. In the experimental part we analyze the advantages ofacceleration techniques and prove that BOA is able to solve hypergraphpartitioning problems reliably, effectively, and without the need forspecifying control parameters and encoding schemes as inrecombination-based genetic algorithms.
Klíčová slova
Optimization problems, decomposition and allocation problems, graphicalprobabilistic model, Bayesian network, Bayesian-Dirichlet metric,Bayesian optimization algorithm, problem knowledge, parallelization,hypergraph partitioning.
Autoři
SCHWARZ, J.; OČENÁŠEK, J.
Rok RIV
2003
Vydáno
9. 5. 2003
Nakladatel
Faculty of Mechanical Engineering BUT
Místo
Brno
ISBN
80-214-2411-7
Kniha
Procceedings of MENDEL 2003
Strany od
133
Strany do
141
Strany počet
9
BibTex
@inproceedings{BUT13984, author="Josef {Schwarz} and Jiří {Očenášek}", title="ACCELERATED BAYESIAN OPTIMIZATION ALGORITHMS FOR ADVANCED HYPERGRAPH PARTITIONING, accepted paper", booktitle="Procceedings of MENDEL 2003", year="2003", pages="133--141", publisher="Faculty of Mechanical Engineering BUT", address="Brno", isbn="80-214-2411-7" }