Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
PANG, S. KOMOSNÝ, D. ZHU, L. ZHANG, R. SARRAFZADEH, A. BAN, T. INOUE, D.
Originální název
Malicious Events Grouping via Behavior Based Darknet Traffic Flow Analysis
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
This paper proposes a host behavior based darknet traffic decomposition approach to identifying groups of malicious events from massive historical darknet traffic. In this approach, we segment traffic flows from captured darknet data, distinguish scan from non-scan flows, and categorize scans according to scan width spreads. Consequently, event groups are appraised by applying the criterion that malicious events generated by the same attacker or malicious software should have similar average packet delay, AvgDly. We have applied the proposed approach to 12 months darknet traffic data for malicious events grouping. As a result, several large scale event groups are discovered on host behavior in the category of port scan, IP scan and hybrid scan, respectively.
Klíčová slova
Darknet traffic; Malicious events grouping; Port scan; IP scan; Hybrid scan; Packet delay distribution; Traffic flow analysis
Autoři
PANG, S.; KOMOSNÝ, D.; ZHU, L.; ZHANG, R.; SARRAFZADEH, A.; BAN, T.; INOUE, D.
Vydáno
13. 10. 2017
ISSN
0929-6212
Periodikum
WIRELESS PERSONAL COMMUNICATIONS
Ročník
96
Číslo
4
Stát
Nizozemsko
Strany od
5335
Strany do
5353
Strany počet
19
BibTex
@article{BUT141089, author="Shaoning {Pang} and Dan {Komosný} and Lei {ZHU} and Ruibin {ZHANG} and Abdolhossein {SARRAFZADEH} and Tao {Ban} and Daisuke {Inoue}", title="Malicious Events Grouping via Behavior Based Darknet Traffic Flow Analysis", journal="WIRELESS PERSONAL COMMUNICATIONS", year="2017", volume="96", number="4", pages="5335--5353", doi="10.1007/s11277-016-3744-4", issn="0929-6212" }