Detail publikace
Reliability-based design: Artificial neural networks and double-loop reliability based optimization approaches
LEHKÝ, D. SLOWIK, O. NOVÁK, D.
Originální název
Reliability-based design: Artificial neural networks and double-loop reliability based optimization approaches
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Two advanced optimization approaches to solving a reliability-based design problem are presented. The first approach is based on the utilization of an artificial neural network and a small-sample simulation technique. The second approach considers an inverse reliability task as a reliability-based optimization task using a double-loop optimization method based on small-sample simulation. Both techniques utilize Latin hypercube sampling with correlation control. The efficiency of both approaches is tested using three numerical examples of structural design – a cantilever beam, a reinforced concrete slab and a post-tensioned composite bridge. The advantages and disadvantages of the approaches are discussed
Klíčová slova
Inverse reliability problem; Artificial neural network; Double-loop reliability-based optimization; Latin hypercube sampling; First order reliability method
Autoři
LEHKÝ, D.; SLOWIK, O.; NOVÁK, D.
Vydáno
1. 3. 2018
ISSN
0965-9978
Periodikum
ADVANCES IN ENGINEERING SOFTWARE
Ročník
1
Číslo
1
Stát
Spojené království Velké Británie a Severního Irska
Strany od
123
Strany do
135
Strany počet
13
URL
BibTex
@article{BUT142491,
author="David {Lehký} and Ondřej {Slowik} and Drahomír {Novák}",
title="Reliability-based design: Artificial neural networks and double-loop reliability based optimization approaches",
journal="ADVANCES IN ENGINEERING SOFTWARE",
year="2018",
volume="1",
number="1",
pages="123--135",
doi="10.1016/j.advengsoft.2017.06.013",
issn="0965-9978",
url="https://www.sciencedirect.com/science/article/pii/S0143974X16305454"
}