Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
HOLEŠOVSKÝ, J.
Originální název
Sensitivity Assessment and Comparison of Maxima Methods in the Estimation of Extremal Index
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Extremal index is the primary measure of local dependence of extreme values and plays important role in extreme value estimation for stationary processes. The maxima estimators are often preferred in practical situations. These estimators, based on properties of the block maxima, are asymptotically characterized by the Generalized extreme value distribution. In contrast to other methods, the maxima estimators gain advantage in stability to the choice of auxiliary parameters. Still the main part of the maxima methods is selection of a proper approximation to the marginal distribution of the underlying process. Although the suitability of the approximation may significantly affect the estimation quality, to the effect of available approaches has not been paid a great interest in the literature. The aim of this contribution is the comparison of available sampling schemes and the assessment of sensitivity of existing maxima estimates of the extremal index.
Klíčová slova
extreme value; extremal index; stationary series; block maxima; resampling
Autoři
Vydáno
18. 12. 2017
Nakladatel
University of Defence
Místo
Brno, Czech Republic
ISBN
978-80-7582-026-6
Kniha
MITAV 2017, Post-Conference Proceedings of Extended Versions of Selected Papers
Strany od
110
Strany do
120
Strany počet
10
URL
http://mitav.unob.cz/data/MITAV%202017%20Proceedings.pdf
BibTex
@inproceedings{BUT142575, author="Jan {Holešovský}", title="Sensitivity Assessment and Comparison of Maxima Methods in the Estimation of Extremal Index", booktitle="MITAV 2017, Post-Conference Proceedings of Extended Versions of Selected Papers", year="2017", pages="110--120", publisher="University of Defence", address="Brno, Czech Republic", isbn="978-80-7582-026-6", url="http://mitav.unob.cz/data/MITAV%202017%20Proceedings.pdf" }