Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KENYERES, M. KENYERES, J.
Originální název
Comparative Study of Distributed Estimation Precision by Average Consensus Weight Models
Typ
článek v časopise ve Scopus, Jsc
Jazyk
angličtina
Originální abstrakt
Distributed algorithms for an aggregate function estimation are an important complement of many real-life applications based on wireless sensor networks. Achieving a high precision of an estimation in a shorter time can optimize the overall energy consumption. Therefore, the choice of a proper distributed algorithm is an important part of an application design. In this study, we focus our attention on the average consensus algorithm and evaluate six weight models appropriate for the implementation into real-life applications. Our aim is to find the most suitable model in terms of the estimation precision in various phases of the algorithm. We examine the deviation of the least precise estimate over iterations for a Gaussian, a Uniform and a Bernoulli distribution of the initial states in strongly and weakly connected networks with a randomly generated topology. We examine which model is the most and the least precise in various phases. Based on these findings, we determine the most suitable model for real-life applications.
Klíčová slova
Distributed computing, wireless sensor networks, average consensus algorithm, estimation precision
Autoři
KENYERES, M.; KENYERES, J.
Vydáno
21. 12. 2017
Nakladatel
Croatian Communications and Information Society
ISSN
1845-6421
Periodikum
Journal of Communications Software and Systems
Ročník
13
Číslo
4
Stát
Chorvatská republika
Strany od
165
Strany do
177
Strany počet
URL
https://jcomss.fesb.unist.hr/index.php/jcomss/article/view/405
Plný text v Digitální knihovně
http://hdl.handle.net/11012/84113
BibTex
@article{BUT142576, author="Martin {Kenyeres} and Jozef {Kenyeres}", title="Comparative Study of Distributed Estimation Precision by Average Consensus Weight Models", journal="Journal of Communications Software and Systems", year="2017", volume="13", number="4", pages="165--177", doi="10.24138/jcomss.v13i4.405", issn="1845-6421", url="https://jcomss.fesb.unist.hr/index.php/jcomss/article/view/405" }