Detail publikace

Comparative Study of Distributed Estimation Precision by Average Consensus Weight Models

KENYERES, M. KENYERES, J.

Originální název

Comparative Study of Distributed Estimation Precision by Average Consensus Weight Models

Typ

článek v časopise ve Scopus, Jsc

Jazyk

angličtina

Originální abstrakt

Distributed algorithms for an aggregate function estimation are an important complement of many real-life applications based on wireless sensor networks. Achieving a high precision of an estimation in a shorter time can optimize the overall energy consumption. Therefore, the choice of a proper distributed algorithm is an important part of an application design. In this study, we focus our attention on the average consensus algorithm and evaluate six weight models appropriate for the implementation into real-life applications. Our aim is to find the most suitable model in terms of the estimation precision in various phases of the algorithm. We examine the deviation of the least precise estimate over iterations for a Gaussian, a Uniform and a Bernoulli distribution of the initial states in strongly and weakly connected networks with a randomly generated topology. We examine which model is the most and the least precise in various phases. Based on these findings, we determine the most suitable model for real-life applications.

Klíčová slova

Distributed computing, wireless sensor networks, average consensus algorithm, estimation precision

Autoři

KENYERES, M.; KENYERES, J.

Vydáno

21. 12. 2017

Nakladatel

Croatian Communications and Information Society

ISSN

1845-6421

Periodikum

Journal of Communications Software and Systems

Ročník

13

Číslo

4

Stát

Chorvatská republika

Strany od

165

Strany do

177

Strany počet

13

URL

Plný text v Digitální knihovně

BibTex

@article{BUT142576,
  author="Martin {Kenyeres} and Jozef {Kenyeres}",
  title="Comparative Study of Distributed Estimation Precision by Average Consensus Weight Models",
  journal="Journal of Communications Software and Systems",
  year="2017",
  volume="13",
  number="4",
  pages="165--177",
  doi="10.24138/jcomss.v13i4.405",
  issn="1845-6421",
  url="https://jcomss.fesb.unist.hr/index.php/jcomss/article/view/405"
}