Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KONEČNÁ, K.
Originální název
Priestley-Chao Estimator of Conditional Density
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This contribution is focused on a non-parametric estimation of conditional density. Several types of kernel estimators of conditional density are known, the Nadaraya-Watson and the local linear estimators are the widest used ones. We focus on a new estimator - the Priestley-Chao estimator of conditional density. As conditional density can be regarded as a generalization of regression, the Priestley-Chao estimator, proposed initially for kernel regression, is extended for kernel estimation of conditional density. The conditional characteristics and the statistical properties of the suggested estimator are derived. The estimator depends on the smoothing parameters called bandwidths which influence the final quality of the estimate significantly. The cross-validation method is suggested for their estimation and the expression for the cross-validation function is derived. The theoretical approach is supplemented by a simulation study.
Klíčová slova
kernel smoothing; conditional density; Priestley-Chao estimator; statistical properties; bandwidth selection; cross-validation method
Autoři
Vydáno
1. 12. 2017
Nakladatel
University of Defence, Brno, 2017
Místo
Brno
ISBN
978-80-7582-026-6
Kniha
Mathematics, Information Technologies and Applied Sciences 2017, post-conference proceedings of extended versions of selected papers
Strany od
151
Strany do
163
Strany počet
13
URL
http://mitav.unob.cz/data/MITAV%202017%20Proceedings.pdf
BibTex
@inproceedings{BUT142655, author="Kateřina {Pokorová}", title="Priestley-Chao Estimator of Conditional Density", booktitle="Mathematics, Information Technologies and Applied Sciences 2017, post-conference proceedings of extended versions of selected papers", year="2017", pages="151--163", publisher="University of Defence, Brno, 2017", address="Brno", isbn="978-80-7582-026-6", url="http://mitav.unob.cz/data/MITAV%202017%20Proceedings.pdf" }