Detail publikace

Asymptotic unboundedness of the norms of delayed matrix sine and cosine

SVOBODA, Z.

Originální název

Asymptotic unboundedness of the norms of delayed matrix sine and cosine

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

The asymptotic properties of recently defined special matrix functions called delayed matrix sine and delayed matrix cosine are studied. The asymptotic unboundedness of their norms is proved. To derive this result, a formula is used connecting them with what is called delayed matrix exponential with asymptotic properties determined by the main branch of the Lambert function.

Klíčová slova

FUNCTIONAL-DIFFERENTIAL EQUATIONS; PAIRWISE PERMUTABLE MATRICES; LINEAR PARTS; REPRESENTATION; SYSTEMS

Autoři

SVOBODA, Z.

Vydáno

1. 12. 2017

Nakladatel

UNIV SZEGED, BOLYAI INSTITUTE, ARADI VERTANUK TERE 1, 6720 SZEGED, HUNGARY

Místo

SZEGED, HUNGARY

ISSN

1417-3875

Periodikum

Electronic Journal of Qualitative Theory of Differential Equations

Číslo

89

Stát

Maďarsko

Strany od

1

Strany do

15

Strany počet

15

BibTex

@article{BUT143605,
  author="Zdeněk {Svoboda}",
  title="Asymptotic unboundedness of the norms of delayed matrix sine and cosine",
  journal="Electronic Journal of Qualitative Theory of Differential Equations",
  year="2017",
  number="89",
  pages="1--15",
  doi="10.14232/ejqtde.2017.1.89",
  issn="1417-3875"
}