Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
SVOBODA, Z.
Originální název
Asymptotic unboundedness of the norms of delayed matrix sine and cosine
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
The asymptotic properties of recently defined special matrix functions called delayed matrix sine and delayed matrix cosine are studied. The asymptotic unboundedness of their norms is proved. To derive this result, a formula is used connecting them with what is called delayed matrix exponential with asymptotic properties determined by the main branch of the Lambert function.
Klíčová slova
FUNCTIONAL-DIFFERENTIAL EQUATIONS; PAIRWISE PERMUTABLE MATRICES; LINEAR PARTS; REPRESENTATION; SYSTEMS
Autoři
Vydáno
1. 12. 2017
Nakladatel
UNIV SZEGED, BOLYAI INSTITUTE, ARADI VERTANUK TERE 1, 6720 SZEGED, HUNGARY
Místo
SZEGED, HUNGARY
ISSN
1417-3875
Periodikum
Electronic Journal of Qualitative Theory of Differential Equations
Číslo
89
Stát
Maďarsko
Strany od
1
Strany do
15
Strany počet
BibTex
@article{BUT143605, author="Zdeněk {Svoboda}", title="Asymptotic unboundedness of the norms of delayed matrix sine and cosine", journal="Electronic Journal of Qualitative Theory of Differential Equations", year="2017", number="89", pages="1--15", doi="10.14232/ejqtde.2017.1.89", issn="1417-3875" }