Detail publikace
Comparison of Parallel Linear Genetic Programming Implementations
GROCHOL, D. SEKANINA, L.
Originální název
Comparison of Parallel Linear Genetic Programming Implementations
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Linear genetic programming (LGP) represents candidate programs as sequences of instructions for a register machine. In order to accelerate the evaluation time of candidate programs and reduce the overall time of evolution, we propose parallel implementations of LGP suitable for current multi-core processors. The implementations are based on a parallel evaluation of candidate programs and the island model of parallel evolutionary algorithm in which subpopulations are evolved independently, but some genetic material can be exchanged by means of migration. Proposed implementations are evaluated using three symbolic regression problems and hash function design problem.
Klíčová slova
Linear genetic programming, parallel implementation, island model, hash function, symbolic regresion
Autoři
GROCHOL, D.; SEKANINA, L.
Vydáno
21. 5. 2017
Nakladatel
Springer International Publishing
Místo
Cham
ISBN
978-3-319-58088-3
Kniha
Recent Advances in Soft Computing: Proceedings of the 22nd International Conference on Soft Computing (MENDEL 2016) held in Brno, Czech Republic, at June 8-10, 2016
Strany od
64
Strany do
76
Strany počet
12
URL
BibTex
@inproceedings{BUT144385,
author="David {Grochol} and Lukáš {Sekanina}",
title="Comparison of Parallel Linear Genetic Programming Implementations",
booktitle="Recent Advances in Soft Computing: Proceedings of the 22nd International Conference on Soft Computing (MENDEL 2016) held in Brno, Czech Republic, at June 8-10, 2016",
year="2017",
pages="64--76",
publisher="Springer International Publishing",
address="Cham",
doi="10.1007/978-3-319-58088-3\{_}7",
isbn="978-3-319-58088-3",
url="https://www.fit.vut.cz/research/publication/10997/"
}
Dokumenty